import numpy as np from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score X, y = make_classification(n_samples=1000, n_features=20, random_state=42) X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42) n_estimators_options = np.arange(50, 201, 50) max_depth_options = np.arange(1, 11) q_table = np.zeros((len(n_estimators_options), len(max_depth_options))) epsilon = 0.1 # probability of exploration (vs. exploitation) alpha = 0.1 # learning rate gamma = 0.9 # discount factor (importance of future rewards) episodes = 50 for episode in range(episodes): # Choose an initial state with random hyper parameters ne_idx = np.random.randint(len(n_estimators_options)) md_idx = np.random.randint(len(max_depth_options)) for step in range(10): # Limit the number of steps per episode # Epsilon greedy action selection if np.random.rand() < epsilon: # Explore: choose random hyper parameters ne_idx_new = np.random.randint(len(n_estimators_options)) md_idx_new = np.random.randint(len(max_depth_options)) else: # Exploit: choose the hyper parameters with the highest Q value so far ne_idx_new, md_idx_new = np.unravel_index(np.argmax(q_table), q_table.shape) # Train model with the selected hyper parameters model = RandomForestClassifier( n_estimators = int(n_estimators_options[ne_idx_new]), max_depth = int(max_depth_options[md_idx_new]) ) model.fit(X_train, y_train) # Evaluate model on the validation set y_pred = model.predict(X_val) accuracy = accuracy_score(y_val, y_pred) # Update the Q value; here the reward is the accuracy q_table[ne_idx, md_idx] = q_table[ne_idx, md_idx] + alpha * ( accuracy + gamma * np.max(q_table[ne_idx_new, md_idx_new]) - q_table[ne_idx, md_idx] ) # Move to the next state ne_idx, md_idx = ne_idx_new, md_idx_new best_ne_idx, best_md_idx = np.unravel_index(np.argmax(q_table), q_table.shape) best_n_estimators = n_estimators_options[best_ne_idx] best_max_depth = max_depth_options[best_md_idx] print("Best Number of Estimators:", best_n_estimators) print("Best Max Depth:", best_max_depth) best_model = RandomForestClassifier( n_estimators = int(best_n_estimators), max_depth = int(best_max_depth) ) best_model.fit(X, y)