LLM Mesh#
For usage information and examples, please see LLM Mesh
- class dataikuapi.dss.llm.DSSLLM(client, project_key, llm_id)#
A handle to interact with a DSS-managed LLM.
Important
Do not create this class directly, use
dataikuapi.dss.project.DSSProject.get_llm()
instead.- new_completion()#
Create a new completion query.
- Returns:
A handle on the generated completion query.
- Return type:
- new_completions()#
Create a new multi-completion query.
- Returns:
A handle on the generated multi-completion query.
- Return type:
- new_embeddings()#
Create a new embedding query.
- Returns:
A handle on the generated embeddings query.
- Return type:
- new_images_generation()#
- class dataikuapi.dss.llm.DSSLLMListItem(client, project_key, data)#
An item in a list of llms
Important
Do not instantiate this class directly, instead use
dataikuapi.dss.project.DSSProject.list_llms()
.- to_llm()#
Convert the current item.
- Returns:
A handle for the llm.
- Return type:
- property id#
- Returns:
The id of the llm.
- Return type:
string
- property type#
- Returns:
The type of the LLM
- Return type:
string
- property description#
- Returns:
The description of the LLM
- Return type:
string
- class dataikuapi.dss.llm.DSSLLMCompletionsQuery(llm)#
A handle to interact with a multi-completion query. Completion queries allow you to send a prompt to a DSS-managed LLM and retrieve its response.
Important
Do not create this class directly, use
dataikuapi.dss.llm.DSSLLM.new_completion()
instead.- property settings#
- Returns:
The completion query settings.
- Return type:
dict
- new_completion()#
- execute()#
Run the completions query and retrieve the LLM response.
- Returns:
The LLM response.
- Return type:
- class dataikuapi.dss.llm.DSSLLMCompletionsQuerySingleQuery#
- with_message(message, role='user')#
Add a message to the completion query.
- Parameters:
message (str) – The message text.
role (str) – The message role. Use
system
to set the LLM behavior,assistant
to store predefined responses,user
to provide requests or comments for the LLM to answer to. Defaults touser
.
- class dataikuapi.dss.llm.DSSLLMCompletionsResponse(raw_resp)#
A handle to interact with a multi-completion response.
Important
Do not create this class directly, use
dataikuapi.dss.llm.DSSLLMCompletionsQuery.execute()
instead.- property responses#
The array of responses
- class dataikuapi.dss.llm.DSSLLMCompletionQuery(llm)#
A handle to interact with a completion query. Completion queries allow you to send a prompt to a DSS-managed LLM and retrieve its response.
Important
Do not create this class directly, use
dataikuapi.dss.llm.DSSLLM.new_completion()
instead.- property settings#
- Returns:
The completion query settings.
- Return type:
dict
- with_message(message, role='user')#
Add a message to the completion query.
- Parameters:
message (str) – The message text.
role (str) – The message role. Use
system
to set the LLM behavior,assistant
to store predefined responses,user
to provide requests or comments for the LLM to answer to. Defaults touser
.
- execute()#
Run the completion query and retrieve the LLM response.
- Returns:
The LLM response.
- Return type:
- execute_streamed()#
Prevent documentation as it’s still preview. :meta private:
- class dataikuapi.dss.llm.DSSLLMCompletionResponse(raw_resp)#
A handle to interact with a completion response.
Important
Do not create this class directly, use
dataikuapi.dss.llm.DSSLLMCompletionQuery.execute()
instead.- property success#
- Returns:
The outcome of the completion query.
- Return type:
bool
- property text#
- Returns:
The raw text of the LLM response.
- Return type:
str
- class dataikuapi.dss.llm.DSSLLMEmbeddingsQuery(llm)#
A handle to interact with an embedding query. Embedding queries allow you to transform text into embedding vectors using a DSS-managed model.
Important
Do not create this class directly, use
dataikuapi.dss.llm.DSSLLM.new_embeddings()
instead.- add_text(text)#
Add text to the embedding query.
- Parameters:
text (str) – Text to add to the query.
- add_image(image_base64)#
Add an image to the embedding query.
- Parameters:
image_base64 (str) – Image content, as a base 64 formatted string.
- execute()#
Run the embedding query.
- Returns:
The results of the embedding query.
- Return type:
- class dataikuapi.dss.llm.DSSLLMEmbeddingsResponse(raw_resp)#
A handle to interact with an embedding query result.
Important
Do not create this class directly, use
dataikuapi.dss.llm.DSSLLMEmbeddingsQuery.execute()
instead.- get_embeddings()#
Retrieve vectors resulting from the embeddings query.
- Returns:
A list of lists containing all embedding vectors.
- Return type:
list
- class dataikuapi.dss.knowledgebank.DSSKnowledgeBankListItem(client, data)#
An item in a list of knowledege banks
Important
Do not instantiate this class directly, instead use
dataikuapi.dss.project.DSSProject.list_knowledge_banks()
.- to_knowledge_bank()#
Convert the current item.
- Returns:
A handle for the knowledge_bank.
- Return type:
- as_core_knowledge_bank()#
Get the
dataiku.KnowledgeBank
object corresponding to this knowledge bank- Return type:
- property project_key#
- Returns:
The project
- Return type:
string
- property id#
- Returns:
The id of the knowledge bank.
- Return type:
string
- property name#
- Returns:
The name of the knowledge bank.
- Return type:
string
- class dataikuapi.dss.knowledgebank.DSSKnowledgeBank(client, project_key, id)#
A handle to interact with a DSS-managed knowledge bank.
Important
Do not create this class directly, use
dataikuapi.dss.project.DSSProject.get_knowledge_bank()
instead.- as_core_knowledge_bank()#
Get the
dataiku.KnowledgeBank
object corresponding to this knowledge bank- Return type:
- class dataiku.KnowledgeBank(id, project_key=None)#
This is a handle to interact with a Dataiku Knowledge Bank flow object
- as_langchain_retriever(search_type='similarity', search_kwargs={})#
Get this Knowledge bank as a Langchain Retriever object
- as_langchain_vectorstore()#
Get this Knowledge bank as a Langchain Vectorstore object