Step 2: Test different Machine Learning models for heart failures prediction#
In this notebook, we will test different Machine Learning approaches to predict heart failures using scikit-learn models (logistic regression, SVM, decision tree, and random forest). For each model, we will first perform a grid search to find the best parameters, then train the model on the train set using these best parameters and finally log everything (parameters, performance metrics, and models) to keep track of the results of our different experiments and be able to compare afterward. Our Experiment Tracking capability relies on the MLFlow framework.
Tip: Experiment Tracking allows you to save all experiment-related information that you care about for every experiment you run. In Dataiku, this can be done when coding using the MLFlow Tracking API. You can then explore and compare all your experiments in the Experiment Tracking UI.
0. Import packages#
Make sure you’re using the ``heart-attack-project`` code environment (see prerequisites)
%pylab inline
Populating the interactive namespace from numpy and matplotlib
import dataiku
from dataiku import pandasutils as pdu
import pandas as pd
from heart_attack_library import model_training
import mlflow
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
/Users/clemencebic/dataiku/dss_instances/data_dir_dss11/code-envs/python/heart-attack-project/lib/python3.7/site-packages/pandas/compat/__init__.py:117: UserWarning: Could not import the lzma module. Your installed Python is incomplete. Attempting to use lzma compression will result in a RuntimeError. warnings.warn(msg) /Users/clemencebic/dataiku/dss_instances/data_dir_dss11/code-envs/python/heart-attack-project/lib/python3.7/site-packages/mlflow/types/schema.py:49: DeprecationWarning: np.object is a deprecated alias for the builtin object. To silence this warning, use object by itself. Doing this will not modify any behavior and is safe. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations binary = (7, np.dtype("bytes"), "BinaryType", np.object)
import warnings
warnings.filterwarnings('ignore')
1. Import the train dataset#
dataset_heart_measures_train = dataiku.Dataset("heart_measures_train")
df = dataset_heart_measures_train.get_dataframe(limit=100000)
2. Set the experiment environment#
As we would like to keep track of all the experiment-related information (performance metrics, parameters and models) for our different ML experiments, we must use a Dataiku managed folder to store all this information. This section is about creating (or accessing if it already exists) the required managed folder.
2.1 Set the required parameters for creating/accessing the managed folder#
# Set parameters
experiment_name = "Binary Heart Disease Classification"
experiments_managed_folder_name = "Binary classif experiments"
project = dataiku.api_client().get_default_project()
mlflow_extension = project.get_mlflow_extension()
2.2 Create/access the managed folder#
# Create the managed folder if it doesn't exist
if experiments_managed_folder_name not in [folder['name'] for folder in project.list_managed_folders()]:
project.create_managed_folder(experiments_managed_folder_name)
# Get the managed folder id
experiments_managed_folder_id = [folder['id'] for folder in project.list_managed_folders() if folder['name']==experiments_managed_folder_name][0]
# Get the managed folder using the id
experiments_managed_folder = project.get_managed_folder(experiments_managed_folder_id)
2.3 Prepare data for training#
# Prepare data for experiment
target= ["HeartDisease"]
X = df.drop(target, axis=1)
y = df[target[0]]
3. Test different modeling approaches#
This section will test different models: a Logistic Regression, an SVM, a Decision Tree, and a Random Forest. For each type of model, we will proceed in several steps:
Set the experiment (where to log the results) and start a new run.
Define the set of hyperparameters to test.
Perform a grid search on these hyperparameters using the
find_best_parameters
function from themodel_training.py
file in the project library.Cross-evaluate the model with the best hyperparameters on 5 folds using the
cross_validate_scores
function from themodel_training.py
file in the project library.Train the model on the train set using the best hyperparameters.
Log the experiment’s results (parameters, performance metrics, and model).
You can find more information on the tracking APIs in the MLFlow tracking documentation.
3.1 Logistic Regression#
We use the Scikit-Learn Logistic Regression model.
with project.setup_mlflow(managed_folder=experiments_managed_folder) as mlflow:
mlflow.set_experiment(experiment_name)
with mlflow.start_run(run_name="Linear Regression"):
# Find best hyper parameters using a grid search
lr = LogisticRegression(random_state = 42)
cv = 5
params = {'penalty':['none','l2']}
scoring = ['accuracy', 'precision', 'recall', 'roc_auc', 'f1']
print("Searching for best parameters...")
lr_best_params = model_training.find_best_parameters(X, y, lr, params, cv=cv)
print(f"Best parameters: {lr_best_params}")
# Set the best hyper parameters
lr.set_params(**lr_best_params)
# Cross evaluate the model on the best hyper parameters
lr_metrics_results = model_training.cross_validate_scores(X, y, lr, cv=cv, scoring=scoring)
print(f'Average values for evaluation metrics after cross validation: {", ".join(f"{key}: {round(value, 2)}" for key, value in lr_metrics_results.items())}')
# Train the model on the whole train set
lr.fit(X,y)
# Log the experiment results
mlflow.log_params(lr_best_params)
mlflow.log_metrics(lr_metrics_results)
mlflow.sklearn.log_model(lr, artifact_path="model")
print("Best parameters, cross validation metrics, and the model have been saved to Experiment Tracking")
2023/08/10 17:43:34 INFO mlflow.tracking.fluent: Experiment with name 'Binary Heart Disease Classification' does not exist. Creating a new experiment.
Searching for best parameters...
Best parameters: {'penalty': 'l2'}
Average values for evaluation metrics after cross validation: accuracy: 0.87, precision: 0.87, recall: 0.9, roc_auc: 0.93, f1: 0.88
Best parameters, cross validation metrics, and the model have been saved to Experiment Tracking
3.2 Support Vector Machine:#
We use the Scikit-Learn SVC model.
with project.setup_mlflow(managed_folder=experiments_managed_folder) as mlflow:
mlflow.set_experiment(experiment_name)
with mlflow.start_run(run_name="SVM"):
# Find best hyper parameters using a grid search
svm = SVC(random_state = 42)
cv = 5
params = {'C': [0.1,1, 10], 'gamma': [1,0.1,0.01,0.001],'kernel': ['rbf', 'poly', 'sigmoid']}
scoring = ['accuracy', 'precision', 'recall', 'roc_auc', 'f1']
print("Searching for best parameters...")
svm_best_params = model_training.find_best_parameters(X, y, svm, params, cv=cv)
print(f"Best parameters: {svm_best_params}")
# Set the best hyper parameters
svm.set_params(**svm_best_params)
# Cross evaluate the model on the best hyper parameters
svm_metrics_results = model_training.cross_validate_scores(X, y, svm, cv=cv, scoring=scoring)
print(f'Average values for evaluation metrics after cross validation: {", ".join(f"{key}: {round(value, 2)}" for key, value in svm_metrics_results.items())}')
# Train the model on the whole train set
svm.fit(X,y)
# Log the experiment results
mlflow.log_params(svm_best_params)
mlflow.log_metrics(svm_metrics_results)
mlflow.sklearn.log_model(svm, artifact_path="model")
print("Best parameters, cross validation metrics, and the model have been saved to Experiment Tracking")
Searching for best parameters...
Best parameters: {'C': 1, 'gamma': 0.1, 'kernel': 'rbf'}
Average values for evaluation metrics after cross validation: accuracy: 0.87, precision: 0.86, recall: 0.93, roc_auc: 0.93, f1: 0.89
Best parameters, cross validation metrics, and the model have been saved to Experiment Tracking
3.3 Decision Tree:#
We use the Scikit-Learn Decision Tree model.
with project.setup_mlflow(managed_folder=experiments_managed_folder) as mlflow:
mlflow.set_experiment(experiment_name)
with mlflow.start_run(run_name="Decision Tree"):
# Find best hyper parameters using a grid search
dtc = DecisionTreeClassifier(random_state = 42)
cv = 5
params = {'max_depth' : [4,5,6,7,8],
'criterion' :['gini', 'entropy']}
scoring = ['accuracy', 'precision', 'recall', 'roc_auc', 'f1']
print("Searching for best parameters...")
dtc_best_params = model_training.find_best_parameters(X, y, dtc, params, cv=cv)
print(f"Best parameters: {dtc_best_params}")
# Set the best hyper parameters
dtc.set_params(**dtc_best_params)
# Cross evaluate the model on the best hyper parameters
dtc_metrics_results = model_training.cross_validate_scores(X, y, dtc, cv=cv, scoring=scoring)
print(f'Average values for evaluation metrics after cross validation: {", ".join(f"{key}: {round(value, 2)}" for key, value in dtc_metrics_results.items())}')
# Train the model on the whole train set
dtc.fit(X,y)
# Log the experiment results
mlflow.log_params(dtc_best_params)
mlflow.log_metrics(dtc_metrics_results)
mlflow.sklearn.log_model(dtc, artifact_path="model")
print("Best parameters, cross validation metrics, and the model have been saved to Experiment Tracking")
Searching for best parameters...
Best parameters: {'criterion': 'entropy', 'max_depth': 4}
Average values for evaluation metrics after cross validation: accuracy: 0.86, precision: 0.86, recall: 0.9, roc_auc: 0.9, f1: 0.88
Best parameters, cross validation metrics, and the model have been saved to Experiment Tracking
3.4 Random Forest:#
We use the Scikit-Learn Random Forest model.
with project.setup_mlflow(managed_folder=experiments_managed_folder) as mlflow:
mlflow.set_experiment(experiment_name)
with mlflow.start_run(run_name="Random Forest"):
# Find best parameters and cross evaluate the model on the best parameters
rfc = RandomForestClassifier(random_state = 42)
cv = 5
params = {'n_estimators': [100,200,300],
'max_depth' : [5,6,7],
'criterion' :['gini', 'entropy']}
scoring = ['accuracy', 'precision', 'recall', 'roc_auc', 'f1']
print("Searching for best parameters...")
rfc_best_params = model_training.find_best_parameters(X, y, rfc, params, cv=cv)
print(f"Best parameters: {rfc_best_params}")
# Set the best hyper parameters
rfc.set_params(**rfc_best_params)
# Cross evaluate the model on the best hyper parameters
rfc_metrics_results = model_training.cross_validate_scores(X, y, rfc, cv=cv, scoring=scoring)
print(f'Average values for evaluation metrics after cross validation: {", ".join(f"{key}: {round(value, 2)}" for key, value in rfc_metrics_results.items())}')
# Train the model using the best parameters
rfc.fit(X,y)
# Log the experiment results
mlflow.log_params(rfc_best_params)
mlflow.log_metrics(rfc_metrics_results)
mlflow.sklearn.log_model(rfc, artifact_path="model")
print("Best parameters, cross validation metrics, and the model have been saved to Experiment Tracking")
Searching for best parameters...
Best parameters: {'criterion': 'gini', 'max_depth': 5, 'n_estimators': 100}
Average values for evaluation metrics after cross validation: accuracy: 0.88, precision: 0.87, recall: 0.92, roc_auc: 0.93, f1: 0.89
Best parameters, cross validation metrics, and the model have been saved to Experiment Tracking
4. Explore the results#
Success: We can now look at the results & compare our different models by going to the Experiment Tracking page (on the top bar, hover over the circle icon, and select Experiment Tracking.