LLM Mesh#

The API exposes several kinds of LLM Mesh items that users can programmatically manipulate.

For more details on the LLM Mesh features of Dataiku, please visit Generative AI and LLM Mesh.

LLMs#

List and get LLMs#

import dataiku
client = dataiku.api_client()
project = client.get_default_project()
llm_list = project.list_llms()

By default, list_llms() returns a list of DSSLLMListItem. To get more details :

for llm in llm_list:
    print(f"- {llm.description} (id: {llm.id})")

Query a LLM#

import dataiku

LLM_ID = "" # Fill with your LLM id

# Create a handle for the LLM of your choice
client = dataiku.api_client()
project = client.get_default_project()
llm = project.get_llm(LLM_ID)

# Create and run a completion query
completion = llm.new_completion()
query = completion \
    .with_message("Write a haiku on GPT models")
resp = query.execute()

# Display the LLM output
if resp.success:
    print(resp.text)

# GPT, a marvel,
# Deep learning's symphony plays,
# Thoughts dance, words unveil.

Transform text into embeddings#

import dataiku

EMBEDDING_MODEL_ID = "" # Fill with your embedding model id

# Create a handle for the embedding model of your choice
client = dataiku.api_client()
project = client.get_default_project()
emb_model = project.get_llm(EMBEDDING_MODEL_ID)

# Create and run an embedding query
txt = "The quick brown fox jumps over the lazy dog."
emb_query = emb_model.new_embeddings()
emb_query.add_text(txt)
emb_resp = emb_query.execute()

# Display the embedding output
print(emb_resp.get_embeddings())

# [[0.000237455,
#   -0.103262354,
#   ...
# ]]

Knowledge Banks (KB)#

List and get KBs#

To list the KB present in a project:

import dataiku
client = dataiku.api_client()
project = client.get_default_project()
kb_list = project.list_knowledge_banks()

By default, list_knowledge_banks() returns a list of DSSKnowledgeBankListItem. To get more details:

for kb in kb_list:
    print(f"{kb.name} (id: {kb.id})")

To get a “core handle” on the KB (i.e. to retrieve a KnowledgeBank object) :

KB_ID = "" # Fill with your KB id
kb_public_api = project.get_knowledge_bank(KB_ID)
kb_core = kb_public_api.as_core_knowledge_bank()

Use as a Langchain-compatible item#

Core handles allow users to leverage the Langchain library and, through it:

  • query the KB for semantic similarity search

  • combine the KB with an LLM to form a chain and perform complex workflows such as retrieval-augmented generation (RAG).

In practice, core handles expose KBs as a Langchain-native vector store through two different methods:

  • as_langchain_retriever() returns a generic VectorStoreRetriever object

  • as_langchain_vectorstore() returns an object whose class corresponds to the KB type. For example, for a FAISS-based KB, you will get a langchain.vectorstores.faiss.FAISS object.

import dataiku
client = dataiku.api_client()
project = client.get_default_project()
kb_core = project.get_knowledge_bank(KB_ID).as_core_knowledge_bank()

# Return a langchain.vectorstores.base.VectorStoreRetriever
lc_generic_vs= kb_core.as_langchain_retriever()

# Return an object which type depends on the KB type
lc_vs = kb_core.as_langchain_vectorstore()

# [...] Move forward with similarity search or RAG 

Reference documentation#

dataikuapi.dss.llm.DSSLLM(client, ...)

A handle to interact with a DSS-managed LLM.

dataikuapi.dss.llm.DSSLLMListItem(client, ...)

An item in a list of llms

dataikuapi.dss.llm.DSSLLMCompletionQuery(llm)

A handle to interact with a completion query.

dataikuapi.dss.llm.DSSLLMCompletionResponse(...)

A handle to interact with a completion response.

dataikuapi.dss.llm.DSSLLMEmbeddingsQuery(llm)

A handle to interact with an embedding query.

dataikuapi.dss.llm.DSSLLMEmbeddingsResponse(...)

A handle to interact with an embedding query result.

dataikuapi.dss.knowledgebank.DSSKnowledgeBankListItem(...)

An item in a list of knowledege banks

dataikuapi.dss.knowledgebank.DSSKnowledgeBank(...)

A handle to interact with a DSS-managed knowledge bank.